A New Isopimarane Diterpene from Nepeta prattii

Zhen Fu HOU, Li YANG, Yong Qiong TU, Yu LI*

National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: A new isopimarane diterpene, isopimar-15-en-3 β , 8 β , 20-triol, was isolated from *Nepeta prattii*. Its structure was elucidated by spectral methods (EIMS, 1D and 2D NMR).

Keywords: Nepeta prattii; isopimarane diterpene; prattol.

Some plants of the *Nepeta* genus were used as Chinese folk medicine to 'dissipate wind and cold'. In order to find the active principles from the genus, studies on the chemical constituents of *Nepeta prattii* were carried out. From the methanol extracts we have isolated a new isopimarane diterpene, prattol **I**.

III R_1 = -CH=CH₂, R_2 =CH₃

I was obtained as colorless cubic crystals from methanol, m.p. 222-224 °C. The EIMS revealed the peak m/z 322, and the ¹³C-NMR and DEPT showed the presence of three CH₃, nine CH₂, four CH and four C. Then the molecular composition was deduced to be C₂₀H₃₄O₃. The ¹H-NMR spectra indicated the presence of a –CH=CH₂ group, a –CH₂OH unit and three methyl singlets. The ¹H-¹HCOSY and HMQC spectra revealed the following partial structure –CH₂-CH₂-CHOH- and two >CH-CH₂-CH₂-. The C-C interconnectivity of all the fragments was established through HMBC experiment. The above information suggested compound **I** to be a pimarane or isopimarane diterpene, and three hydroxyl groups were located at C-3, C-8 and C-20. By further comparison of ¹³C-NMR of **I** with those of the compound isopimar-15-en-8 β , 19-diol **III**², it was found that ¹³C-NMR spectral data at C-15, C-16 and C-17

Zhen Fu HOU et al.

of **I** were parallel to compound **II** but not compound **III**. Moreover, in the ¹H-NMR spectra, the coupling constant values of 14-H (1.74, dd, J=13.8, 1.7; 1.43, d, J=13.8) indicated the presence of W-coupling of 17-CH₃ and 14 α -H. The fact suggested 17-CH₃ and 14 α -H could be axial. The 3 β -configuration of the hydroxyl group was determined on the basis of the coupling constant values (3.53, dd, J=9.7, 6.7) and the correlation between 3 α -H and 5 α -H in NOESY spectra of I. Thus prattol I was elucidated to be isopimar-15-en-3 β , 8 β , 20-triol.

Table 1NMR Spectral Data of Compound I, II, and III(I, 100MHz, C5D5N; II, III, 25MHz, CDCl3)

¹ HNMR		¹³ CNMR		
No.	I	Ι	II	III
1	1.64, 0.90	35.67	39.59	39.5
2	1.91	29.27	18.07	18.1
3	3.53 (dd, 9.7, 6.7)	78.35	35.74	35.6
4		39.71	38.68	38.7
5	1.05 (d, 12.3)	55.91	57.21	56.5
6	2.62 (m)	18.66	18.35	18.1
7	2.01, 1.43	43.99	43.99	42.3
8		70.27	72.49	72.5
9	0.93 (d, 11.7)	58.41	58.21	57.2
10		40.90	36.43	36.4
11	1.99	18.01	17.18	17.4
12	1.61, 1.38	39.09	38.13	36.1
13		37.20	37.20	37.1
14	1.74 (dd, 13.8, 1.7), 1.43 (d, 13.8)	50.79	51.57	53.4
15	5.88 (dd, 17.4, 10.7)	152.42	151.59	147.5
16	5.00 (d, 17.4), 4.91 (d,10.7)	108.65	108.57	111.9
17	1.49 (s)	24.73	24.28	32.3
18	1.30 (s)	29.08	27.08	27.0
19	1.39 (s)	16.37	65.25	65.1
20	4.25 (d, 12.1), 3.79 (d, 12.1)	63.70	16.21	16.1

References

1. S. Passannanti, M. Paternostro and F. Piozzi, J. Nat. Prod., 1984, 47, 885.

2. A. Matsuo, S. Uto, M. Nakayama and S. Hayashi, Tetrahedron Lett., 1976,28, 2451.

Received 18 January 1999